(Reprinted with permission from American Chemical Society)
This work by Zhou's group, first-authored by graduate students Fumiaki Ishikawa and Hsiaoh-Kang Chang and reported in the December 10, 2008 online edition of ACS Nano ("Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates"), demonstrates two advances on route to high-performance transparent electronics: Aligned nanotubes are established as viable active material for transparent transistors and they are shown to offer higher mobility than traditional materials for transparent electronics. As a matter of fact, the USC team has achieved the highest device mobility among transparent transistors reported so far (mobility is a number related to how fast electrons and holes can move inside a semiconductor). Zhou explains that earlier attempts at transparent devices used other semiconductor materials with disappointing electronic results, enabling one kind of transistor (n-type), but not p-types; both types are needed for most applications. The critical improvement in performance came from the ability to produce extremely dense, highly patterned lattices of nanotubes, rather than random tangles and clumps of the material. The Zhou lab has pioneered this technique over the past three years. Zhou's team first grew the nanotubes on quartz substrates and then transferred them to glass or PET substrates with pre-patterned indium-tin oxide gate electrodes, followed by patterning of transparent source and drain electrodes. "In contrast to random networked nanotubes, the use of massively aligned nanotubes enables the devices to exhibit high performance, including high mobility, good transparency, and mechanical flexibility," says Zhou. "In addition, our aligned nanotube transistors are easy to fabricate and integrate, as compared to individual nanotube devices. The transfer printing process allows the devices to be fabricated through a low temperature process, which is particularly important for realizing transparent electronics on flexible substrates". As a proof-of-concept demonstration, the researchers constructed a fully transparent and flexible logic inverter on a plastic substrate and used it to control commercial gallium nitrate light-emitting diodes, which changed their luminosity by a factor of 1,000 as they were energized. One of the challenges that Zhou's team is struggling with is the difficulty of achieving a highly separated sample of nanotubes. Current production methods for carbon nanotubes result in units with different diameter, length, chirality and electronic properties, all packed together in bundles. These mixtures are of little practical use since especially nanoelectronics applications are sensitively dependent on tube structures. In conventional synthesis processes, a significant proportion of the nanotubes (20-30%) is metallic and a highly reliable and effective separation of metallic and semiconducting CNTs is essential for large-scale commercial manufacturing processes for future nanoelectronic devices. Developing novel and efficient ways to remove metallic nanotubes is one of the tasks Zhou's team is now working on.
Source: www.nanowerk.com
No comments:
Post a Comment